State of Scala

Evolutions of Scala

Scala has evolved over the years

Scala 2.8 has some interesting additions and changes
% Collections
% Named and Default Arguments
% package objects
% Chained package clauses
% tailrec annotation

% Type Specialization

Collections

Mutable and
Immutable
flavors
provided

4 N
- oo ®e

Source: http://www.scala-lang.org

Traversable Trait

Top of the Collections hierarchy

Provides quite a few common methods that are available
on all collections

Methods to add elements, split and partition the
collection

Immutable Collections

List—constant time op on head of the list
Stream—Tlike list but lazy evaluation, so infinite length

Vector—improves on List for constant time op on any
element—implemented using Tries

Stack, Queue, Range, Hash Tries, Red-black tree, BitSet,
ListMap,

Mutable Collections

ArrayBuffer
ListBuffer
StringBuffer
LinkedList

Double Linked List
Mutable List
Queue

Array Sequence, Stack, ArrayStack, HashTable, Weak
HashMap, Concurrent Map, Mutable BitSet

Stream

def isPrime(number : Int) : Boolean
if (number < 2) return false

for(i <- 2 to math.sqgrt(number).toInt)
if(number $ i == 0) return false

return true

}

def primes() = {
def nextPrime(number : Int) : Stream[Int] =
if(isPrime(number)) {
number #:: nextPrime(number + 1)
} else {
nextPrime (number + 1)
}

} #::and take

nextPrime(2)

}

val nPrimes = primes().take(10)
println(nPrimes.toList)

Views

Collections come in two flavors

Strict collections—elements are evaluated when you
create

Lazy collections—elements are evaluated on demand

Most collections are strict, Stream is lazy

You can, however, use views to convert a strict
collection into a lazy one

Views provide good modularity

It separates the operations on the collection and can
even chain them while providing lazyness

Views

val names = List("Jack", "Jill", "Bill", "Bob", "Brad", "Bond")

def len(n : String) = {
println(n)
(n, n.length)

}

println(names map len find { _._ 2 Jack
Jill
println("With views now") Bill
Bob

println(names.view map len find { _._2 Brad

Bond
Some ((Bob, 3))
With views now
Jack

Jill

Bill

Bob

Some((Bob,3))

Named and Default Args

You can provide default values for arguments

You can refer to parameters using names

def power(number : Int, exponent : Int
(math.pow(number, exponent))

println(power(2, 3))
println(power(2))
println(power (exponent = 4, number = 3))

Named Arguments

The name you specify may be a named parameter or a
variable in scope—it can’t be both

If you place in parenthesis, it is not considered a named
argument

Expressions are evaluated in the order you place them
Overriding methods can use different parameter names

Name is based on type checking

package objects...

In the past, package can have traits, classes, objects

You can now put methods, etc. in package scope and

provide an easier reach

//Utility.scala
package com.agiledeveloper.util

object Utility {
def power(number : Int, exponent : Int) =
math.pow(number, exponent)

import com.agiledeveloper.util.Utility.

object Use {
def main(args : Array[String]) = {
println(power(2, 4))
}
}

package objects to rescue

//package.scala
package com.agiledeveloper

package object util {
def power(number : Int, exponent : Int) =
math.pow(number, exponent)

import com.agiledeveloper.util.

object Use {
def main(args : Array[String]) = {
println(power(2, 4))
}

You can extend the package objects from traits/classes
and acquire their methods into the package

Chained package clauses

package foo {
package bar {

} I -§_§§“““‘-—-_____)package foo

} package bar

Less noisy

Lightweight

One big difference, package declaration now brings only
the tail package into scope

package foo.bar will not bring in foo into scope

A critical change necessary due to name conflicts

tailrec

Scala has offered limited tail recursion
You had no indication if the recursion was tail recursive
Now you can assert if it is tail recursive

If compiler could not optimize for tail recursion, you get
an error

tailrec

import scala.annotation.tailrec

def fact(number : Int) = {
@tailrec def factImpl(number : Int, factorial : Int) : Int
if (number <= 1)
factorial
else
1 * factImpl(number - 1, factorial * number)
}

factImpl (number, 1)
}

println(fact(5))

error: could not optimize @tailrec annotated method:
it contains a recursive call not in tail position
@tailrec def factImpl(number : Int, factorial : Int) : Int = {

one error found

If you remove 1 = the error goes away

Type Specialization

Generic types substitute types with upper bound types

For primitive types, this involves boxing/unboxing overhead

You can avoid t

nis by using @specialized

This will specia

ize for all primitive types

You can ask for specific types using @specialized(typel,

typel,...)

For unspecialized types, it will use the regular type erasure

Specialization happens only if there is at least one
parameter of specialized type or its array

Type Specialization

def multl[T](input : T) = input
def mult2[@specialized(Int) T](input : T) = input

val startl = System.nanoTime
multl(2)

val endl = System.nanoTime
println(endl - startl)

val start2 = System.nanoTime
mult2(2)

val end2 = System.nanoTime
println(end2 - start2)

References

http://www.scala-lang.org/node/7009

Programming
Scala

Tochde Mults Core Cosglexsty
an the Java Virtual Machine

s
on the -J%,M

Mastering
Synchronczation,
STM. and Actors

Vireker! Sichrarnaniom

il g g | g

¥enkai Subramanion
Andy Hunr

Vierika! Subramantam

Venkat Subramaniam
ecttect by Brian P Hogan

