
Effective Java

Venkat Subramaniam
venkats@AgileDeveloper.com

Jeopardy Style

In this Jeopardy Style presentation we will discuss
various topics in Java

You will drive the presentation, selecting topics,
answering questions, and bringing out your experience
as much as mine

You can download the examples and slides from my web
site for future reference

2

What’s here?

This slides contains a select set of quiz problems.

You can view the entire set of quiz from the files
attached.

3

Singleton

What’s Wrong with this code?

4

Singleton
Several things!

Hard to Test Client—the user of a singleton is hard to
test as mocking it is quite difficult.

Not Thread Safe and making it thread safe is not easy

If you're not sure check out <http://
www.yoda.arachsys.com/csharp/singleton.html>.

No Guarantee of Singleton. Using reflection, you can get
around private!

You may have to throw exception from constructor if
second instance created 5

Singleton

Not extensible—private constructor makes is impossible
to inherit from this class. So you can't extend it.

Serialization can break singleton. You have to make
fields transient and provide readResolve() method.

6

Singleton
Why not use enum for this purpose?

Not so intuitive, but can solve the problems.

7

Concise

Reflection-proof

Serializable

Thread safe

Cleanup

What will the file output.txt contain?

8

Finalizer
Illusionary—Programmers think these help with proper
timely cleanup.

Unpredictable—No guarantee if and when it will be
called

Unnecessary—Right way to solve the problem is to use
try-finally

Dangerous—Resources may be left unclaimed and may
result in errors (like out of limited resources)

May result in race conditions or delay as no guarantee
which thread may reclaim

9

Finalizer

Can leave you in limbo—Uncaught exceptions during
finalization leaves an object in an invalid unreclaimed
state

Slow—Adding finalizers slows object destruction by
about 400 times

10

Step 1

Still has problems...
11

Step 2—try-finally

12

Deterministic Cleanup

13

Closures Can Simplyfy This
In languages that support closures (Groovy, Scala,
JRuby, ...) you can take advantage to write concise code

14

Clone

What's up with this?

15

Clone Issues
Clone is problematic in several ways

Constructor not called

Not thread safe by default, you need to synchronize if
you want thread safety

No guarantee how clone is implemented in a class

Incompatible with final fields

Have to be careful handling internal state

Should not invoke any non-final methods

You need to suppress the CloneNotSupportedException
to make it easier for client to use 16

Attempt 1

17

Copy Constructor

Directly using Copy Constructor hurts polymorphism

Given a reference, how do you create an object of the
type referenced?

Using instanceof (Runtime Type Identification) will not
help extensibility in this case

18

Mix clone and Copy Constr.

19

Generics & Collection

How does this fall short?

20

Does not Support Covariance

21

Ensure Type Compatibility

22

Array

What’s going on here?

23

Runtime Exception

Arrays are Covariant and as a result not type-safe

You inserted a 1L not a 11 (eleven)

Can result in Runtime ArrayStoreException

Generic Lists do not have this problem. By default they
are not covariant. So, they can eliminate these kinds of
problems at compile time.

It is better to use List than Array, much safer

24

Use List

25

Static in Generics
What's the output of this code?

26

Not What You Desire

Type erasure erases the type information

So, there is really no MyList<Integer> or
MyList<Double> under the covers

You only have MyList

So, static is common across all MyList “types”

Use Extreme Caution when using static in generics
27

References

28

You can download examples and slides from

http://www.agiledeveloper.com - download

Thank You!
Please fill in your session evaluations

29

You can download examples and slides from

http://www.agiledeveloper.com - download

